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We indicate formal methods for the reduction of the integral equations of the 

theory of elasticity (not considered in [l] ) to infinite systems of algebraic 

equations. We consider an integral equation of the first kind with a difference 

kernel of mixed type, i. e. containing both Fredholm and Volterra operators. 
To such an equation one can reduce, for example, the problem of the bending 

of a semi-infinite plate on a linearly deformable foundation when for the in- 
version of the differential operator one makes use of the Cauchy function rather 
than the Green function [2]. The method by which this equation is reduced to 

an infinite system is based on the presence of spectral relations for the semi- 

infinite interval, In addition to the relations of similar type, indicated in [a], 
new spectral relations on the semi-infinite interval are constructed. An integ- 
ral equation of the second kind and of mixed type is considered. Integral equa- 
tions of the first and second kind with difference kernels and data prescribed 
on the axis with a cut-off segment are studied. We consider an integral equa- 
tion of the second kind on a finite interval with a kernel represented through 

an improper integral of the product of Bessel functions. The suggested methods 
can be carried over to the corresponding systems of integral equations. 

1. Let us consider the integral equation of mixed type 

~k~~--y)~~~)dll+Sz(Z--y)rn(y)dy=f(i) 
0 0 

We will assume that the integral representation m 

(1.1) 

(1.2) 
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and the asymptotics 

K(t) = rt W-1 [I + 0 @-?I, t 4 cs (I CL I < ‘h) 
are valid. This allows us to represent the function k (a?) in the form 

k (2) = &, (3) + d (5) 

(l-3) 

(1.4) 

where the first term, carrying a singularity. has the form 

(1.5) 

(Kp (z) is the Macdonald function), while the second term can be represented in the 
form 00 

d(z) = -&. 1 D(t)e-%.it, D(t) = K(t) - ’ 
(1 + ty”‘+ (W 

-03 
In order to reduce the integral equation (1.1) to an infinite system of equations. we 

make use of a scheme applied in p] for the simpler case when 1 E 0. According to 
this scheme, we construct the solution in the form of the following expansion in Cheby- 

shev-Laguerre polynomials : 

By carrying out subsequently the operations indicated in [l] and based essentially on the 

use of the spectral relation [4] 
m 

s * kp (x - y) e-uyP-‘/*L$-“’ (2~) dy = pme-xL~“s (2x) (1.8) 
n 

we obtain the following infinite system of algebraic equations: 
m 

5 b,_mcp, = $- (n = %I, 2, . . .I (1.9) 
m=o 

bl, = f 
L+ioD 

s L(P) 

E_ioD (1 - pa)“S+P 

By L (p) we denote the Laplace transform of the function 1 (z), i.e. 

L (p) = f e-p%? (x) dx 
0 

In this connection one has to take into account , that in contrast to Cl], after the sub- 
stitution of (1.7) into (1.1) and term by term integration one has to make use of the 
convolution theorem for the Laplace transforms. In order to avoid operating on diverg- 
ent integrals in subsequent integrations, we have to impose a restriction on the growth 
of the function 1 (z), i. e. 

I(z) = o(ex), z-+~ (1.11) 

This allows us to consider the parameter E, contained in the formula for bk. smaller 
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than unity but larger than the real parts of the numbers which determine the singular 
points of the Laplace transform of the function 2 (z). As it follows from the formulas 

(1.10) for ak, they represent the Fourier coefficients of the function D* (-ctg’/sq) 
and therefore for their computation we can apply the known formulas of trigonometric 

interpolation [3]. These same formulas can be applied also for the computation of the 
remaining coefficients of the infinite system (1.9) if we require in addition that the 

function I (z) be absolutely integrable on the semiaxis (a = 0) and that we should 
have the integral representation m 

f (z) = & 1 F (t) e-itz dt (1.12) 

Then, assuming E = 0 and p = i Ctg 1/a~ in the second formula of (1.10) and sub- 

stituting (1.12) into the third formula of (1. lo), we obtain 

F, (z) = 2 (1 - iz) (1 + iz)“a-‘LF (z) 

The infinite systems of type (1.9) admit, as it is known [S], an exact solution obtained 
by the method of factorization on the unit circumference. To this end, one has to sum 

the series m 

2 (+ +Wk = -W (1.14) 
k= -0 

and to factor out the function [i + yVIA (z)]-1 on the unit circumference. In the 

case under consideration, by virtue of formulas (1.10) and (1.13), the series in the left- 

hand side of (1.14) can be easily summed for z = e&v and we obtain 

(1.15; 

In [6] formulas are given by means of which the factorization problem is solved on the 

unit circumference. The existence and uniqueness of an exact solution in one or another 

class of functions p] is guaranteed by the conditions 

; Iak+bk\<m, r + D* (- ctg lla cp) + L, (i ctg % ‘P) # 0 (1 .I61 

k=--co 

{arg lo* (-- ctg l/2 ‘P) + L, (1 ctg ‘12 cp)lXZY = 0 

The exact solution of system (1.9) obtained by the method of factorization reduces 
the number of quadratures in the exact solution of the initial equation in comparison 

with the one obtained without passing to me system (1.9). however, frequently it turns 
out that numerical evaluation is difficult. Therefore in many cases it is more convenient 
to obtain an approximate solution of the infinite system by the method of reduction 

[truncation]. Moreover, as shown in f7], conditions (1.16) are necessary and sufficient 
for its applicability. 



The present mettlod of reduction of the integral equation (I. I) to the infinite system 

(1.9) is connected in an essential manner with the spectral relation (1. 8) on the semi- 

infinite interval. Its use became possible due to the asymptotics (I. 3). If the asympto- 

tics for A’ (t) is different, then one has to make use of another spectral relation. In order 

to have this possibility, it is necessary to have available a sufficiently large collection 

of spectral relations on the semi-infinite interval. 

2, We construct a new series of spectral relations on a semi-infinite interval. We will 

proceed from the following relation [3]: 

1 

c n* (23 11) C-‘, ‘+p-a 
6 p-1. I+p-a (x2 _ 1) 

;, (1 -?&a 
PY - I) dY = I’ n ga-p-l (2.1) 

(z = rnin (I, y); Rc (1 + p, 1 - 1) > 0) 

The polynomial kernel n* (s, y) for Z < y, if we take into account the known inte- 

gral representation [S] for the Gauss function F (a, b; c; z), can be represented in the 

form II* (5, y) = B (p + 1, 1 - a) y-ax’+~-~F (a, 1 + p; 2 - a + p; x/y) 

In the case Y < x one has to interchange the places of x and y. If in (2.1) we per- 

form now the change of variables 5 = e-4 and Y = e-n, then we arrive at the follow- 

ing spectral relation on the semi-infinite interval: 

m s e -44-nl F (3, &; 1 _ a + 20; e-1 E-nl)p;-l* 20-Z (&_” - 1) &I 

- 
euto-a) n (, _ e-n )1-a 

(2.2) 

0 
n (a)n (20)~ Co4 

= sin nun! (1 - a j- 20),, 
pz-l,20-u (Ze-E _ 1) 

” 

(au = 1 + p, IL = 0, 1,2, . .) 

From the obtained spectral relation, making use of the transformation formulas for the 

Gauss function and changing the parameters, one can obtain a series of spectral relations, 

a great many of which can be applied to equations of the type (1.1). We indicate those 

for which the Gauss function degenerates into an elementary function. Assuming, for 

example, w z a - 1/2, instead of (2.2), we obtain 

Here we have made use of the known relation between the Jacobi polynomials and the 

Gegenbauer polynomials c,,v (z) [8]. 

The spectral relation 

follows from (2.2) for CL (0 -~ ‘iz. The Jacobi polynomials contained in (2.4) can 
be replaced by Chebyshev polynomials of tile first killd T, (z), or of the second 

kind u,, (z) , by making use of the relations 
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12’ 1”“’ -‘:” (1 - 2~) = (‘/2),r u,, (1/l - z) = (- 1)” (I/&, z-“‘T~,,+~ (l/i) t/ (2.5) 

The spectral relation (2.4) can be applied to the solving of Eq. (1.1). if in the asymto- 

tics (1.3) we have p = 0. In this case it is easy to isolate the singular part from the 
kernel function (1. ,?) 

l- f !+t! e-i.C’ & = f Ill 1 c,h 4 1 
2.x (2.li) 

In [9], the spectral relation (2.5) is obtained in a different manner and in the same place 
an application of it is given to the solving of an integral equation of type (1.1) for 
1 (x) s 0. Spectral relations of another type on the semi-infinite interval are obtained 

if we start from the relations [lo] 

! II’;, .i (.r, y) J’;; -‘+ (1 - 2~") dy 
y 

i,,, 
(( _ ,#+ !,--:-L P’ -a- z=z- m 

x-I* 
(1 - 2x:“) (2. i) 

,I 

A nL = I’(1 - ;+ -+ na) r (3 -/- I)/) 2~‘_’ l/r/! 1‘(1 + p + ?.a)]-1 
(U,(z<l, 2s+=I-Y+(;-p), 23=I+v---i’-p, Reo+<l) .- 

Here wc,Y (z, Y) is the discontinuous Weber-Sonine integral, expressed in terms of 
Bessel functions by the formula 

w;, ‘{ (X, /J) = jm t’J, (t4 JY CL!/) dt (2.8) 

(Re(1 -iv -&J)>O. Rev<l) 

Making use of its known representation in terms of the Gauss’ hypergeometric function 
[8]. we find the following important property : 

w;, y (%-‘, 11-l) = (r;rl)l+yw, i.c (E, 11) (2.9) 

Performing in (2.7) the substitution o == g-1 and y = q-1 and making use of property 
(d. 9). we obtain a spectral relation of the semi-infinite interval 

F lv;:, y (E, ‘1) I’;-‘+ (I - 2n-2) dn 

\ 

i,n pg-;- (I - 25-2) 
= 

i 
nt+p (n” _ f)OC 4 

17v+!+ 
(2.10) 

(@=I-vvL+f, l<<<C@) 

Giving different values to the parameters Y, y, l,~, we can obtain from this relation a 
series of spectral relations. We indicate only one of them 

obtained from (2.10) for Y = y = I_L = 0. Here K (z) is the complete elliptic inte- 
gral of the first kind and P, (z) is legendre’s polynomial. The spectral relations of 
the type (2.10) allow to reduce, in the described manner (see Sect. 1). to infinite systems 
the integral equations of the first kind given on a semi-infinite interval, whose kernels 

do not depend on the difference of the arguments but have the same singularity as the 
kernels in (2.10) and (2.11). Integral equations of this type occur in the problems of 
the concentration of stresses around circular cracks. 
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3. The method of reduction of the integral equation (1.1) to an infinite system can 
be easily carried over to the corresponding equation of the second kind 

cp (4 + s k (x (3-f) 
0 

In this couuection it is not necessary to have a spectral relation on the semi-infinite 

interval and we can use arbitrary functions, orthogonal on the semi-infinite or on a fin- 
ite (*) interval, provided the weight functions are not equal to infinity at the endpoints 

of the orthogonality interval. However, obviously, the application of the Laguerre poly- 

nomials, i. e. the representation of the solutions in the form 

cp (2) = 2e-” 5 cp,L, (2x) (3.2) 
m=-0 

allows us to obtain the infinite system (0.) 

Cp,, + i a,,‘P, + i: bn-nxV, = fn (3.3) 
m=o m=o 

which is the discrete analog of the initial equation. In addition, for the coefficients bk, 

f,, we have the previous formulas (1.10) in which one has to put p = 1/2. Thus, the 
ramification points in the integral, which determine bc, disappear and this, by virtue of 

the regularity of L (z) in the semiplane Re z > e > 1 , leads to the fact that b, = 0 
and k < 0. For the coefficients uk- we also have formula (1.10) where D* (t) has to 

be replaced by K (t). If we consider, as above, that I (2) is absolutely integrable 

on the semiaxis and that f (z) is representable in the form (1.12), then formula (1.13) 
holds for p = 1/2 also for the case under consideration. 

The conditions (1.16) for Y = 1, D * = K and L,, = L are necessary and suffi- 

cient for the applicability of the reduction method to the infinite system (3.3). 

It is useful to remark that in the case of the Volterra equation (k (s)+ EGG 0) the infi- 

nite system (3.3) {ak = 0) degenerates into recursion relations for the unknown $, 

For them one can give abo an explicit expression in terms of fn ill]. 
Thus, we have outlined another method for obtaining the exact solution of the Volterra 

integral equation without making use of the inversion formula for the Laplace transform. 

If for the Volterra equation 00 

(z ,; 0) (3.4) 

we look for a solution in the form (3.2), then it can be also reduced to the infinite sys- 
tem 

‘P,, ! 5 h-,a, = f.,, (3.5) 

which is- the discrete allalog of the initial equation. The formulas for the coefficients 

of this system are similar to those corresponding to the coefficients of the system (3.3). 

*) In this connection, by a suitable change of variables one has to reduce the finite 
interval to a semi-infinite one. 
“) This, relative to the case z (~1 E 0, was, apparently, discovered for the first time 

in PI. 
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In the case of the integral equation of the form 

q(z)+!+ y)w(Y)q(Y)& +sl(s - Y)w(y)cp(@Q = f(z) (3.6) 
0 0 

one can proceed in the following manner. As before, we look for the solution in the 

form (3.3). but in addition we assume 

q(z) = w (3) cp (x) = 2 jj e-%Jm (22) 
m==a 

As a result we arrive at the following infinite system : 
ce 11 

(3.7) 

$1), = ; bn, msnr b II, m = 2 f e-SW (5) L, (2z) L, (2.z) ds = 
m=o 0 

In addition. the coefficients a&, bk, fk are determined by the same formulas as the COP 

responding coefficients of the infinite system (3.3). 

4, We indicate a method of reduction to an infinite system the integral equation of 
the form 

(3 S) +a A@--Y)cp(Y)Q= f(z) (I = I> a) (4.1) 
--cc (1 

We will assume that from the kernel one can isolate a singular part k, (z - y), for 

which we have the spectral relation 
00 

s k, (Z - Y) p (Y) %* (y) dy = %g (z) J&* (5) tz S= 0, n = O-1,2. . 4 (4.2) 

Here (I)n,* (z) = n, [p (31 h ,w ere n,, (3 is a polynomial, orthogonal in the sense 

that 

Thus, let 

00 

s p (5) g (x) n,* (x) a,,,* (5) dx = Mm,, 
0 

k (2) = ‘A (4 + d (4 (r = const) 

(4.3) 

(4.4) 

We intToduce the function 

f*(z) = f(*z), co+(x) = (P(&x) P > Q) (4.5) 

and we write Eq. (4.1) as two equations. - one for x > a, and the other for X < - a. 

Then, as a result of obvious changes of variables and of the use of (4.4) and (4.5). we 

l ) In order to simplify the writing, we assume that the singular part of the kernel func- 
tion has the property k, (2) = k, (- z). In [3] spectral relations on the semi-infinite 

interval indicated also for the asymmetric kernel, therefore we apply the tentative me- 
thod also in the case when k, (z) # k, (- z), but then it will be necessarv to introduce 

two families of n*-polynomials. 
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= f+ (4 (2 > a) (4.6) 

According to the spectral relation (4.2) we construct the solution of the system (4.6) in 

the form 

(4.7) 

We substitute (4.7) into (4.6) and then we multiply both sides of Eq. (4.6) by &-‘P 

(s-a) a,* ( - ) t u an we integrate over the interval (a, oo). Making use of (4.2) d 
and (4.3) we arrive at the infinite systems 

rep,+ + 5 a$p,* + i Gmcp,t = fnf (IL = 0, 1, 2, . .) (4.8) 
m=a m=o 

0 

Obviously, in the case d (z) = d (-z) th e infinite systems degenerate into two inde- 

pendently solvable systems (one for the even component of f(z), and the other for the 
odd component). The problem of the bending of two semi-infinite plates resting on a 
linearly deformable foundation [2] and also some plane problems of the theory of cracks 

can be reduced to equation (4.1) with a kernel which can be represented in the form 

(1.4). This allows us to take (1.8) as the spectral relation and to set in the formulas 

(4.7) and (4.8) 
p (x) = e7yxP-“z, g (5) = ems, n,,* (2~) = 2PLt”,-“s (2~) 

3, = A* = IhI, k” (5) = k,(x) (4.9) 

The coefficients of the infinite system become essentially simpler having the form 

ah, = d,,-,, uk, = d,-,, G,, = c,& (4.10) 

For some particular functions L) (t) and K (t) these integrals can be reduced by the 
methods of contour integration to known special functions [4]. In the general case, the 
use of the method of trigonometric interpolation 15, 121 is the most convenient. This is 
equivalent to the approximation, for example, of the function D (t) in the form p2] 

(4.11) 
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The formulas for the approximation coefficients dl* are given in p2. 51. They are 
expressed in terms of the discrete values of the function D (t). Making use of (4.11) 
we can obtain the formula .* 

d’ _ P-*P r (2 + 2p) 
k- 

(- I)'(1 + 2P) j, I' (l/z + k - 1 (-$$; + 1 - k + p) -i 2 

A formula of similar structure can be obtained by the same method for the coefficients 

CL+. In this connection it is useful to take into account that by virtue of (1.6) 

K (t) = ‘j’ (1 +p)‘“-“* + D (t) 

For the most frequently encountered case p = 0 the solution can be expressed in terms 

of Hermite polynomials of even index [4]. In addition, in this case we can apply the 
spectral relation (2.4) and the solution can be obtained in the form of a series in Che- 

byshev polynomials. The described method can be easily carried over also to the cor- 
responding equations of the second kind. In this connection, the necessity in the spectral 

relation is eliminated (see Sect. 3) and the use of the Laguerre polynomials L, (22) 
turns out to be the most natural. 

6. In [13] the dual equation 
m 

s E-” 11 + K (E)l x (E) Jv (54 dE = F (4 (0 G-Z < 1) (5.1) 
0 

m 

s 
E-"jx (E) Jv (b) 6 = G (4 (5 > 1) 

I 
(K(E)-,01 E-+0) 

which is applicable to many mixed poblems of the theory of elasticity, is reduced to 

the integral equation 

~(5)+5(~(~)dy~K(t)Jir(~~)J1~(ty)dt?f(”) (5.2) 
0 0 

(0.<z<<1, p=v+P-2) 

In order to reduce this integral equation to an infinite system we will construct its solu- 
tion in the form of the series 

cp (X) = Itp i cp,PZ O(1 - 2x2) (5.3) 
m=o 

in Jacobi polynomials. Making use of the orthogonality of the latter 
1 . 

s 
x2Pi.l Pk O (1 - 2x2) P:* O (1 - 2x2) ax = 2 (i Jy+ 2n) 

0 

and also of the following relation [lo]: 

P;-’ (1 - 2x2) J, (xy) dx = r ;,--,;:f’ J. M 

(Rep<-1, Hev<i, a=l-vYz+fm) 

we reduce the integral equation (5.2) to the infinite system 
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L-fc xv+* f (x) Pi’ ’ (1 - 2x7 dx 
0 

In the case 11 = 0 the solution is obtained in the form of a series in Legendre poly- 

nomials. 
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